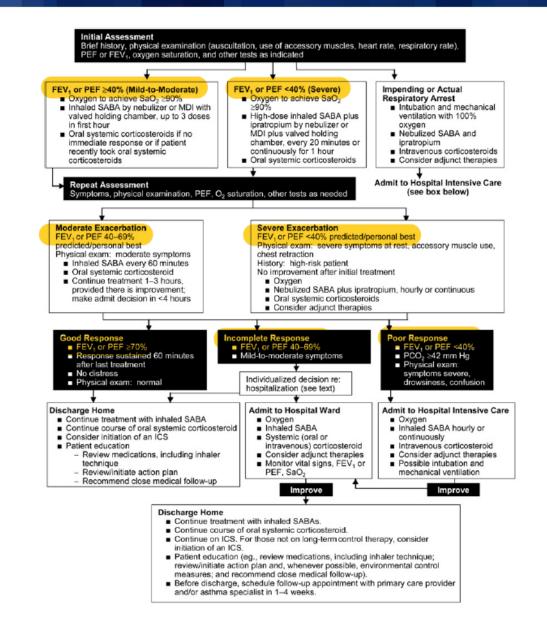


Achieving Quality Care: Acute Asthma Exacerbations in Children

Emily C. Sterrett, MD, MS Assistant Professor of Pediatrics Pediatric Emergency Medicine Emily.Sterrett@duke.edu

"More than 22 million Americans have asthma, and it is one of the most common chronic diseases of childhood, affecting an estimated 6 million children. The burden of asthma affects the patients, their families, and society in terms of lost work and school, lessened quality of life, and avoidable emergency department (ED) visits, hospitalizations, and deaths."

- Guideline-based care
- Role of Scoring systems
- Process Improvement in ED-based Care
 - Timeliness, Length of Stay, Community Spread
- Opportunities for Inpatient Quality
 - Strategies, Measures, Readmissions
- Role of Inhaled Corticosteroids in Acute Care


2007 Guidelines from the National Asthma Education and Prevention Program (NAEPP) – Acute Care Recommendations

- Indication to seek acute care: <40% predicted FEV₁ or PEF
- Indication for discharge: >70% predicted FEV₁ or PEF
- Support EMS protocols for prehospital asthma treatment

2007 Guidelines from the National Asthma Education and Prevention Program (NAEPP)

Acute Care Recommendations

2007 Guidelines from the National Asthma Education and Prevention Program (NAEPP) – Acute Care Recommendations

- Emergency department based treatment
 - Assessment of lung function (measurement of FEV_1)
 - Repetitive or continuous SABA
 - Oral systemic steroids (methpred & pred)
 - Magnesium sulfate or heliox in severe exacerbations unresponsive to initial treatments

2007 Guidelines from the National Asthma Education and Prevention Program (NAEPP) – Acute Care Recommendations

- ED Discharge
 - SABA and oral systemic steroids
 - Consider initiating inhaled corticosteroids
 - Referral to follow-up care
 - ED Asthma discharge plan
 - Review inhaler technique & environmental control factors

2018 – Italian Society of Pediatrics: Guideline on management of the acute asthma attack in children (systematic review)

- <u>Humidified oxygen</u> application when SaO2 <92%
- <u>SABA:</u> MDI & spacer for mild-moderate, nebulization for severe
- <u>Anticholinergics</u>: Nebulized ipratropium for mod-severe attacks, 3x in first hour
- <u>Systemic corticosteroids</u>: equivalence of dexamethasone & prednisone, in the first hour of care
- Inhaled corticosteroids: should not be used instead of systemic steroids. High dose ICS has shown benefit, but in non-standard clinical contexts.

2018 – Italian Society of Pediatrics: Guideline on management of the acute asthma attack in children (systematic review)

- Intravenous SABA (salbutamol): can be administered if failing initial therapies
 - Patient should be monitored in the ICU, continuous ECG, twice daily electrolyte and lactate
- Magnesium sulfate IV: can be considered in severe asthma
- Heliox (70:30): can be considered in hypoxemic severe asthma

2018 – Italian Society of Pediatrics: Guideline on management of the acute asthma attack in children (systematic review)

- <u>Aminophylline</u>: can be used in impending respiratory failure, not to be used in mild-moderate attacks
- Epinephrine: can be used when SABA not available; otherwise no utility
- <u>Leukotriene modifiers:</u> no utility in acute asthma

Table 1 Pediatric asthma severity score calculation table

Score	1	2	3
Respiratory rate			
2 to 3 yr	≤ 34	35 to 39	≥ 40
4 to 5 yr	≤ 30	31 to 35	≥ 36
6 to 12 yr	≤ 26	27 to 30	≥ 31
Older than 12 yr	≤ 23	24 to 27	≥ 28
Oxygen requirements	> 90% on room air	85%-90% on room air	< 85% on room air
Auscultation	Normal breath sounds or end-expiratory wheeze only	Expiratory wheezing	Inspiratory and expiratory wheezing or diminished breath sounds
Retractions	≤ One site	Two sites	≥ Three sites
Dyspnea	Speaks in sentences, coos and babbles	Speaks in partial sentences, short cry	Speaks in single words/short phrases/grunting

Table IV. The 12-point PRAM

Signs	0		2	3
Suprasternal retractions	Absent		Present	
Scalene muscle constration	Absent		Present	
Air entry*	Normal	Decreased at bases	Widespread decrease	Absent/minimal
Wheezing*	Absent	Expiratory only	Inspiratory and expiratory	Audible without stetho- scope/silent chest with minimal air entry
O_2 saturation	≥95%	92%-94%	<92%	

*If asymmetric findings between the right and left lungs, the most severe side is rated.

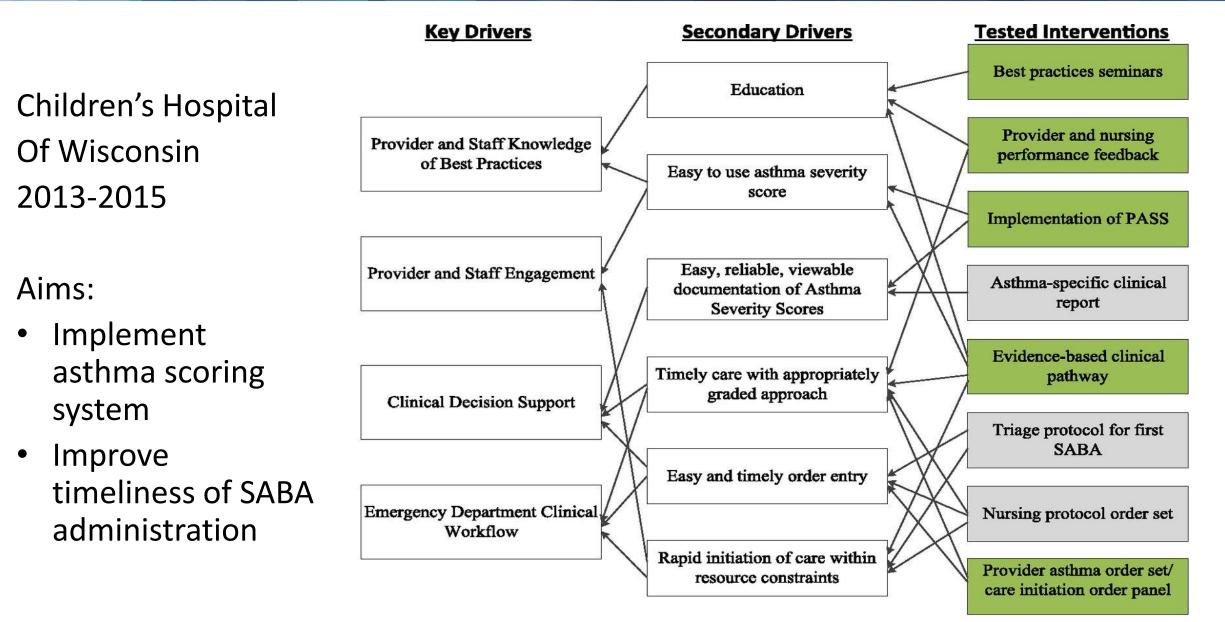
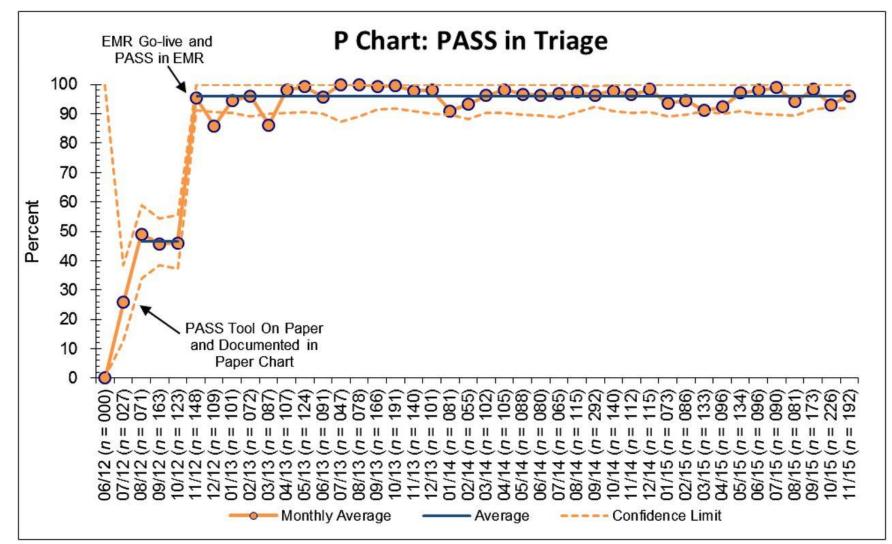


Table 1 The Modified Pulmonary Index Score (MPIS)

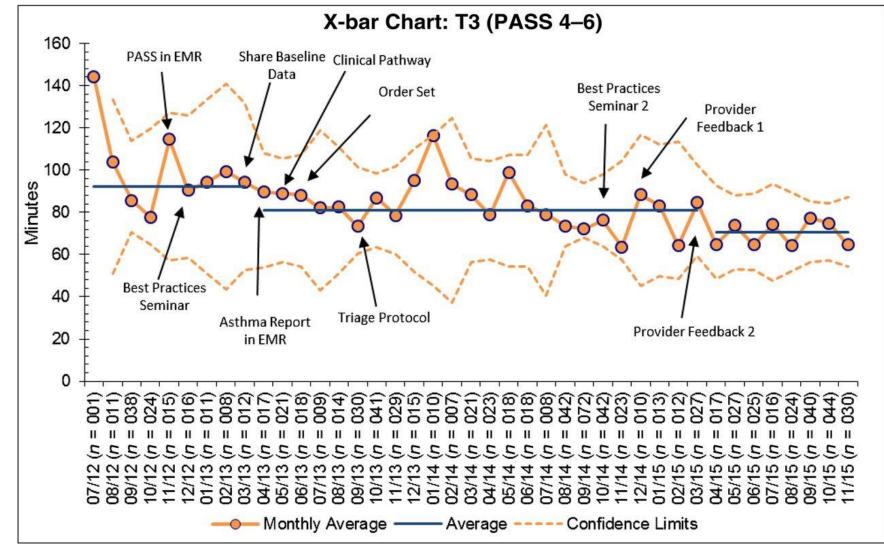
				Score	
		0	1	2	3
Oxygen saturation	, %	>95	93-95	90-92	<90
Accessory muscle	use	None	Mild	Moderate	Severe
Inspiratory-to-expiratory flow ratio		2:1	1:1	1:2	1:3
Wheezing		None	End expiratory	Inspiratory and expiratory wheeze, good aeration	Inspiratory and expiratory wheeze, decreased aeration
Heart rate	<3 years old	<120	120-140	141-160	>160
	≥3 years old	<100	100-120	121-140	>140
Respiratory rate	<6 years old	≤30	31-45	46-60	>60
	≥6 years old	≤20	21-45	36-50	>50

Maekawa T, Oba MS, Katsunuma T, Ishiguro A, Ohya Y, Nakamura H. Modified pulmonary index score was sufficiently reliable to assess the severity of acute asthma exacerbations in children. Allergol Int. 2014;63:603-7

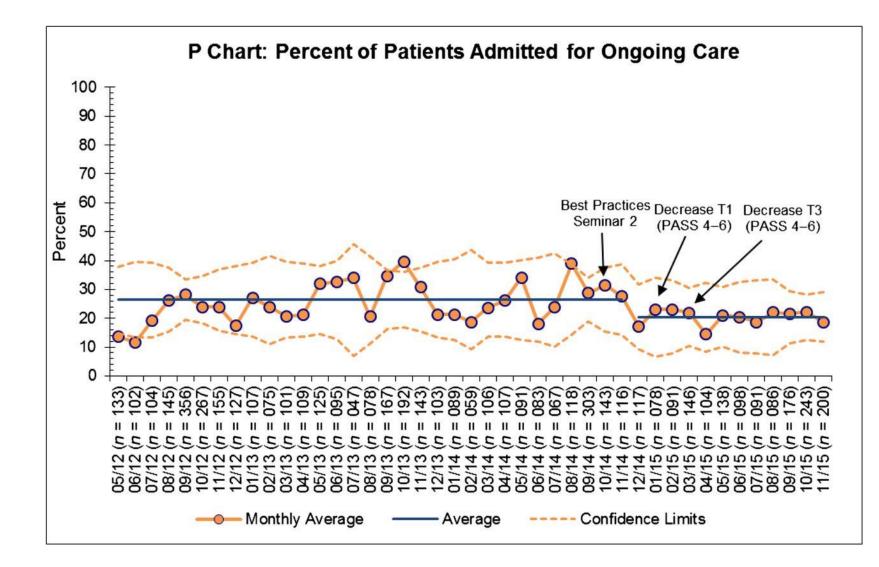


Children's Hospital	ΤοοΙ	Purpose
Of Wisconsin 2013-2015	PASS in EMR	Improve scoring compliance. Available on all computers (bedside) and auto- calculates net score
	Provider asthma order set	Facilitate order entry and standardize treatment
 Aims: Implement asthma scoring 	Asthma respiratory report	Facilitate rapid assessment of PASS and vital sign trends in relation to medication administration
 asthma scoring system Improve timeliness of SABA 	Triage protocol	Improve timely administration of first SABA. Standing protocol order allowing for nurse-initiated administration of initial SABA
administration	Nurse order set	Facilitate nurse order entry and improve compliance with triage protocol use

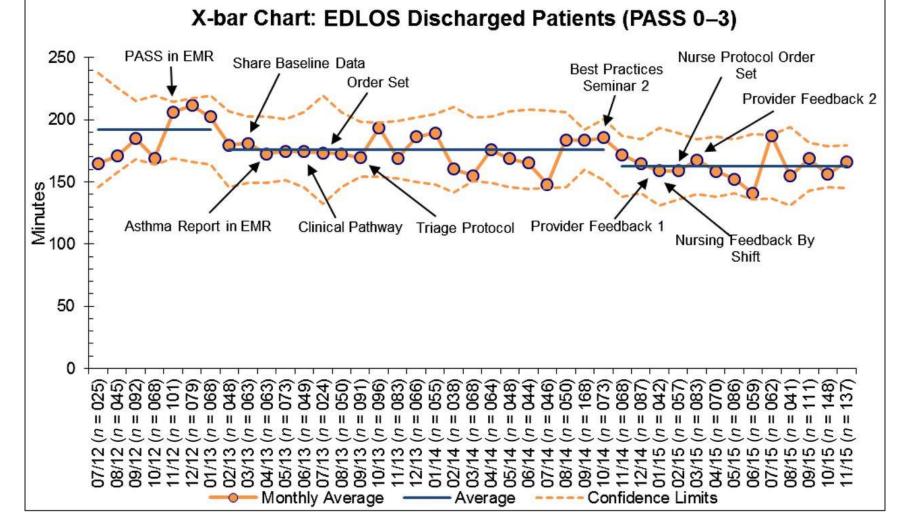
Children's Hospital Of Wisconsin 2013-2015


- Implement asthma scoring system
- Improve timeliness of SABA administration

Children's Hospital Of Wisconsin 2013-2015


- Implement asthma scoring system
- Improve timeliness of SABA administration

Children's Hospital Of Wisconsin 2013-2015


- Implement asthma scoring system
- Improve timeliness of SABA administration

Children's Hospital Of Wisconsin 2013-2015

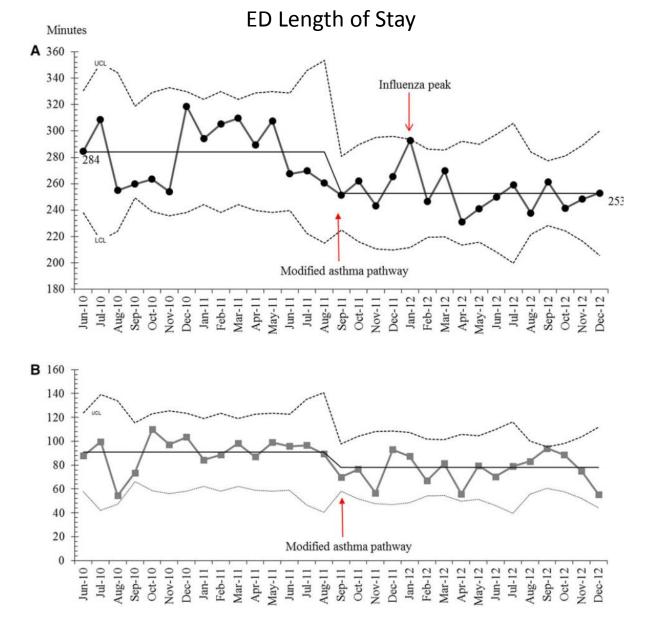
- Implement asthma scoring system
- Improve timeliness of SABA administration

Seattle Children's Hospital 2011-2012

- Implement an admission score
- Reduce ED LOS for admitted patients

Variable	0 points	1 point	2 points	3 points
Respiratory	rate			
<2 mo		≤60	61-69	≥70
2–12 mo		≤50	51-59	≥60
1–2 yr		≤40	41–44	≥45
2–3 yr		≤34	35–39	≥40
4–5 yr		≤30	31–35	≥36
6–12 yr		≤26	27-30	≥31
>12 yr		≤23	24–27	≥28
Retractions	None	Subcostal or intercostal	Two of the following: subcostal, intercostal, sub- sternal <i>or</i> nasal flaring (infant)	Three of the following: subcostal, intercostal, substernal, infraclavicular <i>or</i> nasal flaring/head bobbing (infant)
Dyspnea				
0–2 yr	Normal feeding, vocalizations and activity	One of the following: difficulty feeding, decreased vocalization or agitated	Two of the following: difficulty feeding, decreased vocalization or agitated	Stops feeding, no vocalization, drowsy or confused
2–4 yr	Normal feeding, vocalizations, and activity	One of the following: decreased appetite, increased coughing after play, hyperactivity	Two of the following: decreased appetite, increased coughing after play, hyperactivity	Stops eating or drinking, stops playing, <i>or</i> drowsy and confused
>4 yr	Counts to ≥10 in one breath	Counts to 7–9 in one breath	Counts to 4-6 in one breath	Counts to \leq 3 in one breath

Admission Scores to Reduce ED LOS



Seattle Children's Hospital

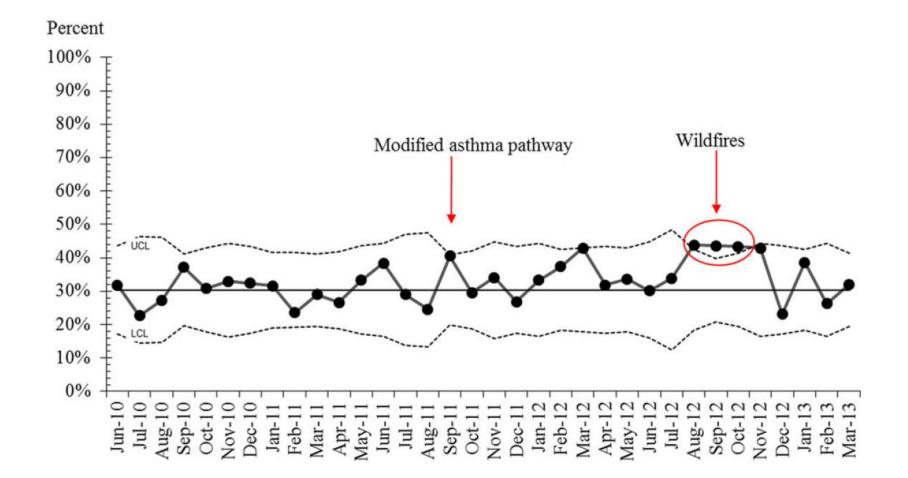
2011-2012

Aims:

- Implement an admission score
- Reduce ED LOS for admitted patients

Rutman L, Migita R, Spencer S, Kaplan R, Klein EJ. Standardized Asthma Admission Criteria Reduce Length of Stay in a Pediatric Emergency Department. Acad Emerg Med. 2016;23:289-96.

Admission Scores to Reduce ED LOS



Proportion of Asthma Admissions

Seattle Children's Hospital 2011-2012

Aims:

- Implement an admission score
- Reduce ED LOS for admitted patients

Rutman L, Migita R, Spencer S, Kaplan R, Klein EJ. Standardized Asthma Admission Criteria Reduce Length of Stay in a Pediatric Emergency Department. Acad Emerg Med. 2016;23:289-96.

Children's National Health System & Community ED Partner 2012-2015

Aims:

- Implement an acute pediatric asthma care pathway in a community ED
- Decrease rate of transfer to tertiary pediatric facility

Triage Order Set

- Nursing Interventions
 - Continuous pulse ox monitoring
 - Peripheral IV start
- <u>Medications</u>
 - For patients <30 kg:
 - Continuous ipratropium 0.5 mg ×1; FIRST ROUND ONLY
 - Continuous albuterol 7.5 mg ×1
 - For patients >30 kg:
 - Continuous ipratropium 1 mg ×1; FIRST ROUND ONLY
 - Continuous albuterol 15 mg ×1
 - Dexamethasone [Decadron 6 mg for ped pts 7-10 kg PO]
 - Dexamethasone [Decadron 10 mg for ped pts 11-20 kg PO]
 - Dexamethasone [Decadron 16 mg for ped pts 21 kg and above PO]

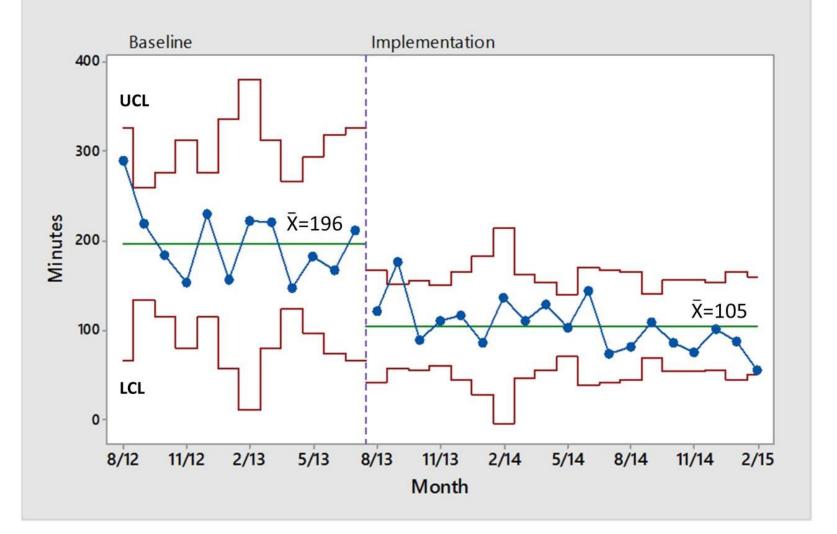
Provider Order Set

- <u>Interventions</u>
 - Continuous pulse ox monitoring
 - Consider consult other facility
- Medications
 - Albuterol 0.083% INH Solution 7.5 mg/15 mg via neb
 - Ipratropium 0.02% INH Solution 0.5 mg/1 mg via neb
 - o Dexamethasone
 - o 6 mg PO once
 - o 10 mg PO once
 - o 16 mg PO once
 - Additional nebulized medications
 - o Albuterol 0.083% INH Solution
 - 2.5 mg via neb
 - 5 mg via neb
 - 7.5 mg via neb
 - Additional medications
 - Magnesium sulfate 50%
 - See dose instructions
 - o Epinephrine
 - See dose instructions
 - Methylprednisolone succinate
 - See dose instructions

Children's National Health System & Community ED Partner 2012-2015

- Implement an acute pediatric asthma care pathway in a community ED
- Decrease rate of transfer to tertiary pediatric facility

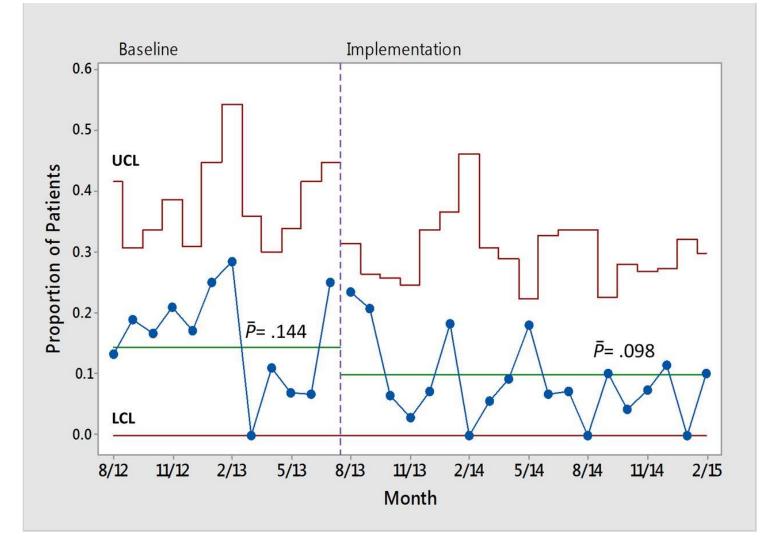
Year	Month	Event
2012	August	Introductory meeting with CED nursing
	November	Introductory meeting with CED providers
2013	February	CED nursing training begins
	April	Meeting with CED IT
	May	Meeting with CED pharmacy
	June	Preimplementation meeting with all CED stakeholders
	August	Pathway "live"
	September	Continued CED nursing education
2014	March	CED staff survey about pathway
	May	Preliminary results presented to CED providers
	September	Continued CED nursing education


Community ED Partners

Mean time to steroid administration

Children's National Health System & Community ED Partner 2012-2015

- Implement an acute pediatric asthma care pathway in a community ED
- Decrease rate of transfer to tertiary pediatric facility


Community ED Partners

Children's National Health System & Community ED Partner 2012-2015

Aims:

- Implement an acute pediatric asthma care pathway in a community ED
- Decrease rate of transfer to tertiary pediatric facility

Proportion of patients Transferred to Tertiary ED

QI Strategies for Improved Inpatient Asthma

Criteria for weaning albuterol

Criteria for weaning oxygen

Criteria for transfer to ICU

Criteria for consultation of specialist

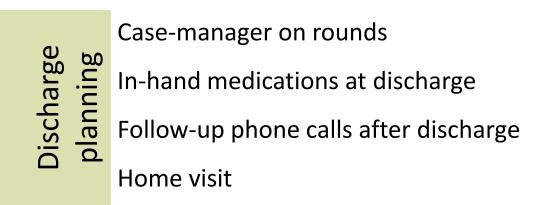
Criteria for discharge

Increase MDI use

Standard assessment of severity and control

Increase CAC-1, -2, and -3 compliance

Standard discharge medication reconciliation


Guidelines for stepwise controller therapy

Content: pathophysiology, triggers, medications

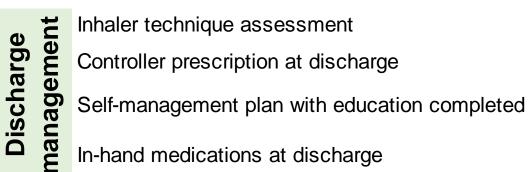
Format: group, 1:1, video, booklets

Education Who: nurse, respiratory therapy, dedicated educator

Self-management education

care Standardize

QI Measures for Improved Inpatient Asthma

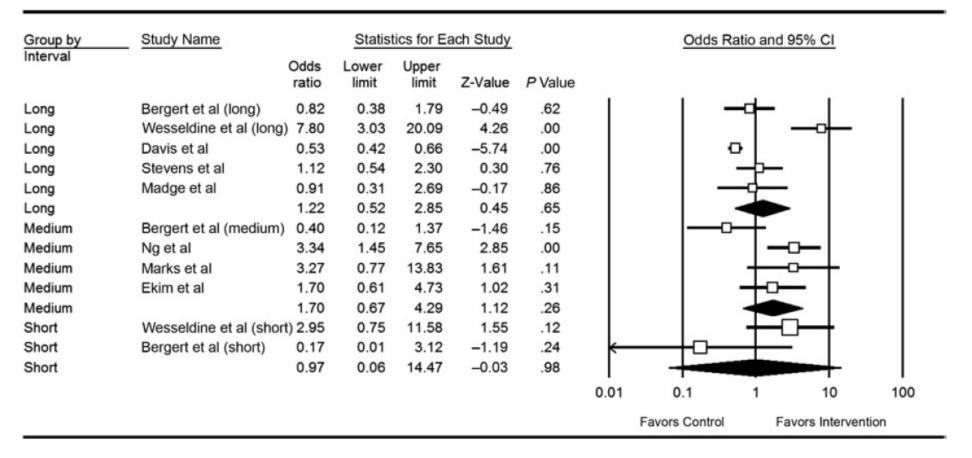


Acute asthma management

Time to beta-adrenergic agonist administration Oxygen saturation checked on presentation Peak flow measured Use of oral steroids Use of ipratropium for inpatient CAC-1, 2, 3 compliance

Hospital resources

LOS Hospital costs and charges ICU transfer Death


S	Knowledge assessment
Ĕ	Parent reported asthma management
C C C	Parental knowledge of asthma
parent outcomes	Short-term of retention as asthma knowledge
lt e	Demonstration of acceptable asthma management by PMD
le	after discharge
pa	Symptom assessment
and	School absenteeism
ar	Symptoms and/or impairment of daily activities
atient	Self-reported efficacy scores
atie	Parent satisfaction with education
Ċ	Caregiver quality of life

	Follow-up
S	PMD follow-up
outcomes	Asthma specialty clinic follow-up
COL	Resource use
oute	Revisit to ED
0	Readmissions
	Future steroid course

Postdischarge

Parikh K, Keller S, Ralston S. Inpatient Quality Improvement Interventions for Asthma: A Meta-analysis. *Pediatrics*. 2018;141.

QI Measures for Improved Inpatient Asthma

FIGURE 2

Risk of ED revisit after index hospitalization with QI intervention for children with asthma. Time intervals from index hospitalization were grouped into the following 3 categories: short (<30 days), medium (30 days–6 months), and long (6 months–12 months).

Parikh K, Keller S, Ralston S. Inpatient Quality Improvement Interventions for Asthma: A Meta-analysis. Pediatrics. 2018;141.

Discharge planning – Wesseldine et al, 1999

Discharge intervention

- Single, specialized nurse
- At home with asthma booklet
- Asthma action plan

Controller medications

- Structured interview
- 20 minutes

Table 2 Morbidity in intervention and control groups over six weeks after discharge

	Intervention group (n = 76) (%)	Control group (n = 74) (%)	χ^2	p Value
Hospital readmission	3 (4)	5 (7)	0.59	NS
A&E attendance	2 (3)	8 (11)	4.03	< 0.05
Consultations with GP for				
problematic asthma	12 (16)	22 (30)	4.16	< 0.05
Outpatient visits	10 (13)	11 (15)	0.09	NS
Reported cold/flu-like symptoms	41 (54)	48 (64)	1.85	NS

Data unavailable for 10 children.

Table 3 Morbidity in intervention and control groups o	over six months after discharge
--	---------------------------------

	Intervention group $(n = 80)$		Control group (n	= 80)		
	Children for whom data are available (n)	Outcome	Children for whom data are available (n)	Outcome	χ2	p Value
Hospital readmission (%)	80	12 (15)	80	30 (37)	10.5	0.001
A&E attendance (%)	80	6 (8)	80	31 (38)	22	0.001
Consultations with GP for						
problematic asthma (%)	78	31 (39)	77	72 (90)	50	0.001
Median school loss in days (range)	38	2(0-10)	34	2(0-10)	_	0.07

Wesseldine LJ, McCarthy P, Silverman M. Structured discharge procedure for children admitted to hospital with acute asthma: a randomised controlled trial of nursing practice. Arch Dis Child. 1999;80:110-4.

Discharge dispensing – Andrews et al, 2012

Is dispensing inhaled corticosteroid cost prohibitive?

Table I. Key assumptions for the decision tree					
Assumption	Model input	Reference			
Follow-up rate after ED visit for acute exacerbation	46%	Zorc et al ¹²			
ICS prescription rate of patient attends follow-up	54%	Cabana et al ²⁰			
Prescription fill rate	59%	Wang et al ²¹			
Medication compliance	48%	McQuaid et al ²²			
ED relapse rate	11%	Zorc et al ¹²			
Relative risk of ED relapse if taking ICS	0.5	Sin and Man ²³			
Hospital admission rate	23%	Pollack et al ²⁴			
ICS cost	\$87*	South Carolina Medicaid Data			
Hospital medication discount	40%				
Outpatient follow-up visit cost	\$97	South Carolina Medicaid Data			
ED visit cost	\$237	South Carolina Medicaid Data			
Hospital admission cost	\$6192	South Carolina Medicaid Data			

for each ICS delivery system applied to cohort of pediatric asthmatics treated in the ED for acute exacerbation

Table II. Decision/cost-effectiveness analysis results*

	ED relapse visits/100 patients	Hospital admissions /100 patients	Direct cost/100 patients	Direct + indirect cost/100 patients
Usual care Uniform prescribing	10.6 9.4	2.4 2.2	\$23 400 \$20 800	\$27 100 \$22 000
Uniform dispensing	8.4	1.9	\$19100	\$20 100

*Data assume 1-month follow-up period; does not include sentinel ED visit cost. Values are given in 2010 US dollars.

*Data assume 1-month follow-up period; does not include sentinel ED visit cost. Values are given in 2010 US dollars.

Andrews AL, Teufel RJ, 2nd, Basco WT, Jr., Simpson KN. A cost-effectiveness analysis of inhaled corticosteroid delivery for children with asthma in the emergency department. *J Pediatr.* 2012;161:903-7.