

Osteomyelitis and Septic Joints; Practical Considerations

Coleen K. Cunningham

Goals/objectives

- To improve understanding of the diagnosis, treatment, and follow-up of pediatric bone and joint infections
 - Describe common presentations of bone and joint infection in children
 - List most common etiologies
 - Identify appropriate diagnostic studies
 - Prescribe empiric antibiotics
 - Understand limitations of empiric antibiotics
 - Describe important aspects of follow-up

Osteomyelitis- types

- Hematogenous
 - Bacteremia- metaphysis-local infection
 - The younger the patient, the more likely infection will extend to joint space
- Direct extension
 - Local infection eventually extending into bone
- Traumatic / surgical
 - Nail in the foot, trauma, direct manipulation

Presentationhematogenous osteomyelitis

Neonate

- Fever
- ↓ movement
- Redness, swelling
- Pustule
- irritability

Young Child

- c/o pain
- Limp
- Stops walking
- Fever

Older child

- c/o pain
- Fever

Organismshematogenous osteomyelitis

Neonate

- S. aureus
- Group B strep
- Gram neg enterics

Young child

- S. aureus
- K. kingae
- Group A strep
- S. pneumonia
- (H. influenzae b)

Older child

- S. aureus
- Group A strep

Special circumstances

Just had chicken pox?

Child with sickle cell disease?

Culture vs Molecular Testing for Osteo

Less Common Causes of Osteo/ septic joint

Arnold Bradley Infect Dis Clinics NA 2015

Table 1 Important aspects of the patient history and associated pathogens or syndromes			
Historical Finding	Associated Diagnosis		
Travel			
International	Tuberculosis		
Western United States	Coccidioidomycosis		
Midwest United States	Histoplasmosis		
Eastern United States	Lyme arthritis		
Hunting/forest	Blastomycosis		
Animal exposures			
Cat/kitten scratch	Bartonella henselae		
Cat bite	Pasteurella multocida		
Cat or livestock birth	Coxiella burnetti (Q-fever)		
Reptiles/amphibians	Salmonella spp		
Ingestions			
Unpasteurized dairy	Brucellosis Tuberculosis (<i>Mycobacteria tuberculosis</i>)		
Not fully immunized	Haemophilus influenza Streptococcus pneumoniae		
Sickle cell disease	Salmonella spp		
Recent pharyngitis	Streptococcus pyogenes (invasive infection or postinfectious arthritis) Fusobacterium necrophorum (Lemierre disease)		
Recent diarrheal illness	Postgastrointestinal infection arthritis (reactive arthritis) Salmonella spp		

Distribution of Infected Bones/
Joints

Arnold Bradley Infect Dis Clinics NA 2015

Hematogenous osteomyelitis; evaluation

- History
- Physical Examination
 - Vital signs
 - Evidence of sepsis?
 - Area(s) of tenderness
 - Redness/swelling

- Laboratory
 - CBC
 - ESR
 - CRP
 - Blood culture
 - Bone aspirate/culture
- Imaging
 - X-ray
 - MRI
 - CT
 - Ultrasound

Treatment considerations

- What drug?
- What route?
- How long to treat?

Neonate

- Anti-staph
- Cephalosporin

Young child

- Anti-staph
- Anti-K. kingae
- (change if unimmunized)

Older child

Anti-staph

In the old days.....

- MSSA, S. pneumonia, group A strep
 - IV Cefazolin... to oral Keflex or
 - IV Nafcillin ... to oral Dicloxacillin
- Good data that 4 weeks was plenty
- PICC lines weren't available so home IV not easy

Now....

- Up to 50% of S aureus is MRSA
 - Vanco covers 100% of Staph but doesn't cover Kingella
 - Clinda misses 15-20% of Staph
 - Bactrim covers staph but no data on outcomes
- Does MRSA require longer treatment?
- Doctors have gotten attached to PICC lines. Is IV better than oral?

We are left with 4 major questions

- What empiric antibiotics to use initially?
- What empiric antibiotics to use for switch to outpatient?
- IV or Oral?
- How long to treat?

Antibiotics

- Anti- staph
 - Nafcillin/oxacillin
 - Vancomycin
 - Clindamycin
 - TMP/SMZ
 - Linezolid
 - Minocycline/doxycycline
 - Daptomycin
- 1st, 2nd, or 3rd generation cephalosporin

Prolonged Intravenous Therapy Versus Early Transition to Oral Antimicrobial Therapy for Acute Osteomyelitis in Children

Theoklis Zaoutis, MD, MSCE*****.cd.o, A. Russell Localio, PhDd.o, Kateri Leckerman, MS*, Stephanie Saddlemire, MSPH*, David Bertoch, MHAo, Ron Keren, MD, MPH***.cd.o.f

TABLE 1	Demographic and Clinical Characteristics
---------	--

C	haracteristics	Intravenous	Oral Therapy	
		Therapy ($N = 1021$)	(N = 948)	
Age, n (%)				
0-1 y		86 (8)	77 (8)	
1-5 ý		343 (34)	322 (34)	
>5 ý		592 (58)	549 (58)	
	ospital stay, median	5 (3-6)	4 (3-6)	
(Interd	quartile range), d			
Gender, n (%)			
Male		629 (62)	583 (62)	
Race, n (%)				
White		725 (71)	676 (71)	
Black		186 (18)	150 (16)	
Other		66 (6)	80 (8)	
Missing		44 (4)	42 (4)	
Site, n (%)				
Shoulde	Г	23 (2)	25 (3)	
Upper ar	m	48 (5)	39 (4)	
Forearm		31 (3)	34 (4)	
Hand		38 (4)	38 (4)	
Pelvic/th	igh	315 (31)	287 (30)	
Lowerle		247 (24)	245 (26)	
Ankle/fo	ot	182 (18)	178 (19)	
Multiple	sites	25 (2)	25 (3)	
Unspect		112 (11)	77 (8)	
Organism, i				
	streptococcus	35 (3)	34 (4)	
Streptoo	occi, other	11 (1)	15 (2)	
S aureus		351 (34)	291 (31)	
	coccus, other	51 (5)	33 (3)	
	In-resistant 5 aureus	83 (8)	62 (7)	
Escherich	ila coli	2 (<1)	2 (<1)	
Pneumo		12 (1)	9 (1)	
	am-negative organisms	9 (1)	5 (1)	
>1 orga		89 (9)	73 (8)	
-	procedure	377 (37)	314 (33)	
	tibiotics received, n (%)			
Cefazolir	•	603 (59)	508 (54)	
	/nafcillin	345 (34)	243 (26)	
Vancom		188 (18)	83 (9)	
Clindam		309 (30)	321 (34)	
	prim-sulfamethoxazole	5 (<1)	6 (1)	
Linezolic	I	2 (<1)	2 (<1)	
Other		355 (35)	216 (23)	
	Index, median	1.67 (1.67–1.67)	1.67 (1.67-1.67	
(Inter	quartile range):			

Transition to oral therapy by institution and treatment outcomes

TABLE 2 Treatment Outcomes of Acute Osteomyelitis

Outcome	Therapy	Oral Therapy (N = 948), II (%)	Propensity Score-Adjusted OR (95% CI) for Those Children Treated With
			Early Transition to Oral Therapy
Primary outcome			
Treatment failure within 6 mo of diagnosis	54 (5)	38 (4)	0.77 (0.49-1.22)
Chronic osteomyelitis	13 (1.3)	8 (0.8)	0.84 (0.33-2.13)
Musculoskeletal surgery	18 (1.8)	15 (1.6)	0.80 (0.38-1.70)
Complication of osteomyelitis*	11 (1.1)	6 (0.6)	0.75 (0.27-2.07)
Acute osteomyelitis as sole readmission diagnosis	12 (1.2)	9 (0.9)	0.72 (0.25-2.08)
Secondary outcomes			
Any rehospitalization within 6 mo of diagnosis	102 (10)	56 (5.9)	0.6 (0.38-0.96)
Catheter-associated complication	35 (3)	0 (0)	_
Adverse effect of antimicrobial agents ^b	15 (1.5)	4 (0.4)	0.39 (0.14–1.1)
Approximate and the second state of the second	the discount of the same	deser-	

Analysis used the complete cohort. — indicates no data.

^a Data include synovitis, pyogenic arthritis, sacroillitis, disorders of bone and cartilage not otherwise specified, and disc disorder.

Data Include adverse drug reactions associated with antibiotics, C difficile Infection, or agranulocytosis.

Oral therapy

- Use high doses
- Emphasize adherence
- Careful follow-up
- Significant data that change to oral can occur early (3 days) when there is significant evidence of clinical improvement
- Total duration of therapy of 4 weeks is adequate

We are left with 4 major questions

- What empiric antibiotics to use initially?
 - Depends on age and how ill the child is
- What empiric antibiotics to use for switch to outpatient?
 - Probably clindamycin
- IV or Oral?
 - Oral
- How long to treat?
 - 4 weeks unless slow response to therapy or very extensive disease or MRSA, then would consider 6 weeks.

PEDIATRIC INFECTIOUS DISEASES UPDATE

A coordinated, protocol-driven approach probably works best

- After review of past experience, investigators initiated standard diagnosis and treatment protocol for all suspected bone and joint infections.
- Included: labs, blood culture, rapid schedule MRI, with bone aspiration while still sedated.
- Team rounding
- Standard follow up

TABLE III Demographic, Imaging, Antibiotic, Surgery, and Hospitalization Differences Between Cohorts			
Differences	Group I (N = 210)	Group II (N = 61)	P Value*
Demographic			
Age at the time of hospitalization†† (yr)			0.76
Birth to three years	70 (33.3%)	23 (37.7%)	
Four to twelve years	110 (52.4%)	29 (47.5%)	
Thirteen to eighteen years	30 (14.3%)	9 (14.8%)	
Sex†			0.37
Male	129 (61.4%)	33 (54.1%)	
Female	81 (38.6%)	28 (45.9%)	

Lawson Copley et al J of Bone and Joint Surgery 2013

PEDIATRIC INFECTIOUS DISEASES UPDATE

A coordinated, protocol-driven approach probably works best

Lawson Copley et al J of Bone and Joint Surgery 2013

TABLE III Demographic, Imaging, Antibiotic, Surgery, and Hospitalization Differences Between Cohorts			
Differences	Group I (N = 210)	Group II (N = 61)	P Value*
Imaging			
No. of MRIs per child	1.01	1.33	0.04
MRI delay after admission§	2.47	1.04	0.0002
Antibiotic			
Empiric antibiotic frequency†			
Clindamycin	27 (12.9%)	52 (85.2%)	0.0001
Cefazolin	89 (42.4%)	0 (0.0%)	0.001
Vancomycin	25 (11.9%)	6 (9.8%)	0.58
Other	69 (32.9%)	3 (4.9%)	0.02
Antibiotic changes per child	2.0	1.4	0.02
Mean duration of intravenous antibiotic use§	19.3	13.5	0.11
Mean duration of oral antibiotic use§	27.7	43.7	0.0004
Total duration of antibiotic use§	41.9	54.9	0.04
Surgical			
No. of surgeries per child	1	1.1	0.54
Hospital			
Length of initial stay§	10.75	9.25	0.22
Readmission frequency†	24 (11.4%)	4 (6.6%)	0.34
Total length of stay§ (including readmission)	12.8	9.7	0.054

Septic joint

- Almost everything said about osteo applies to joints but:
- *H. influenza* was an important pathogen so think of it if unimmunized; in teenagers, consider *N. gonorrheae*
- Kingella kingae hard to culture from joint fluid. Should inoculate blood culture bottles or perform PCR
- Septic hip is surgical emergency; ask surgeon to drain immediately
- Antibiotics concentrate in joint fluid- no reason to instill antibiotics into joint
- Generally can treat for total (IV+ PO) 3 weeks

Special cases

- Step on nail "osteo"
- Pelvic osteo
- TB osteo- if exposure history or poor response to therapy, culture for TB
- Premies and neonates

My suggestions

- PIDS and IDSA Guidelines slated to come out in 2018- suggest review
- In the meantime
 - If possibly septic- Vancomycin AND 3rd generation cephalosporin and look very hard for one or more focus to drain. Drainage of primary focus critical.
 - If not toxic, would start with clindamycin IV. If response is good, you know your oral switch drug.
 - Always get blood culture prior to antibiotics.
 - Always push ortho to aspirate bone or joint to try to get a bug.
 - I almost always go to oral and I switch as soon as "clearly getting better"; this is obviously easier if I am sure of my oral switch drug.
 - If using beta-lactam, monitor CBC weekly for neutropenia.
 - If using oral beta-lactam, use high dose (100-150 mg/kg/day).
 - Careful follow up.