SAFE Cholecystectomy: Techniques that minimize bile duct injuries

Keri Seymour, DO
August 2, 2017
Sea Pines, SC
History

• 1st laparoscopic cholecystectomy was performed by Dr Med Erich Muhe in Germany in 19851 and in the United States in 1988.

• In 1993, the New York State (NYS) Department of Health discovered injury to the common bile duct was 15 times higher after laparoscopic cholecystectomy (31 cases) compared to open cholecystectomy (2 cases) over a six month period.
Learning curve

• Learning curve for a new technique involves increased complications and operative time, however it is the “essential precursor to success”.

• National Institutes of Health Consensus Panel on Gallstones and Laparoscopic Cholecystectomy declared outcomes were highly dependent on the skill, judgment, experience, and training of the surgeon.

• Bile duct injury occurred in 2.2% of the first 13 laparoscopic cholecystectomy cases, then decreased to 0.1%.
Since inception laparoscopic cholecystectomy is associated with increased bile duct injuries

- 750,000 cholecystectomies performed each year in US
- Laparoscopy associated with reduced pain, earlier return to activity, fewer wound infections
- 0.4% risk of biliary injury
- 2000-3000 in major biliary injury in US per year
- 3-4 per 1000 lap cholecystectomy cases
- 1 per 1000 open cholecystectomy cases
Biliary injury

- Most major biliary injuries are due to misidentification of bile ducts, particularly, misidentification of the common bile duct as the cystic duct.

- Key concepts in pathogenesis relate to the ability of inflammatory contraction to distort biliary anatomy and the confusing effect of aberrant anatomy.
Anatomic variability

- Hepatocystic triangle > Calot’s triangle
- Bile duct
- Arterial anatomy
- Orienting landmarks
Calot’s triangle vs Hepatocystic triangle

Calot’s triangle
• In 1891 included
 – cystic duct
 – common hepatic duct
 – cystic artery (not the inferior border of the liver as is commonly believed)

Hepatocystic Triangle
• Bound by the
 – cystic duct
 – common hepatic duct
 – Liver margin
Gallbladder
Posterior cystic artery
Right hepatic artery
Right hepatic duct
LIVER
Left hepatic duct
LIVER
Anterior cystic artery
Hartmann's pouch
Cystic duct
Common bile duct
Cystic artery
Common hepatic duct
Common hepatic artery
Cystic Artery

- Cystic artery:
 - anteromedial to cystic duct
 - inferior to lymph node

- 25% of cases the superficial and deep branch of the cystic artery have separate origins

- Deep cystic artery, as a rule,
 - arises from the right hepatic

- Superficial cystic one arises from the
 - right hepatic, middle hepatic, left hepatic, gastroduodenal, or retroduodenal
Accessory arteries

One artery is typically present in Calot’s triangle but there are also accessory arteries from different origins:

a from below and lateral to the cystic duct in 5.3% of cases,
b piercing the gallbladder bed near the fundus in 1.2% of cases,
c along and posterior to the cystic duct in 0.4% of cases, and
d just below Hartmann’s pouch in 0.4% of cases.
No cystic artery in Calot’s triangle

- No artery: 5.7%
- Artery below and posterior: 1.6%
- Along and anterior cystic duct: 0.8%
- Piercing gallbladder near fundus: 0.4%
Single of double artery outside of Calot’s triangle

Below Hartmann’s 1.3%

2 arteries posterior to cystic duct 0.8%

Double arteries below Hartmann’s pouch 0.4%
Cystic Duct

- Typical anatomy of bile duct occurs in 50-60%- right anterior sectional duct 5/8+ right posterior sectional 6/7= right hepatic duct

- Most common variation when anterior and posterior do not join together-25% join left or do not join
- Low insertion right posterior duct

- 2% cystic ducts from right posterior duct, not right hepatic

- 1/3 people subvesical ducts below Glisson’s capsule
Cystic duct aberrancy

<table>
<thead>
<tr>
<th>Lateral angular insertion (75%)</th>
<th>Anterior spiral</th>
<th>Posterio spiral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low insertion (10%)</th>
<th>Paralled with CBD with common sheath (14 - 23%)</th>
<th>Insertion into ampula of vater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High insertion</th>
<th>Insertion into right hepatic duct (0.006 - 0.01%)</th>
<th>Insertion into left hepatic duct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Landmarks:

- **Medial:**
 - Falciform between segment 3 and 4

- **Superior:**
 - Common hepatic duct is 4 and 5 mid plane of liver

- **Posterior and Inferior:**
 - Rouvieres’s sulcus: fissure on right side of liver where right portal pedical enters (75-85% of pts)

- **Lateral:**
 - Epicholedochal plexus

- **Inferior:**
 - Duodenum
Visible CBD
Rouvières’s sulcus: fissure between right lobe and caudate
CULTURE OF SAFETY IN CHOLECYSTECTOMY
Culture of Safety in Cholecystectomy”

- Elements such as good bail-out techniques
- good access techniques
- and other elements of safety are also employed
- Critical View of Safety,
- routine cholangiography,
- the infundibular technique,
- visualization of the common bile duct and common
- hepatic duct, and
- top-down cholecystectomy are some methods
6 suggested strategies for Safe Cholecystectomy

• Critical View of Safety
• Intraoperative timeout to confirm CVS prior to clipping
• Understand aberrant anatomy
• Imaging of biliary tree
• Stop before entering zone of significant risk
• Ask for another surgeon's assistance
Infundibular Technique

- Funnel-shaped infundibular cystic duct junction is identified.
- Easier to achieve than CVS.
- Biliary inflammatory, fusion, and contraction can make the CBD resemble the cystic duct.
- Increases the chance of biliary injury.
1-Critical View of Safety

- Introduced by Strasburg in 1995
- Used to identify the cystic duct and cystic artery
- Three components
 1. Clear the hepatocystic triangle of fat and fibrous tissue
 2. Cystic plate is exposed by separating lower 1/3 of gallbladder from liver
 3. Only 2 structures enter the gallbladder
“Critical View of Safety”

- Introduced in an analytical review written in response to the sudden increase in biliary injury associated with laparoscopic cholecystectomy.
- CVS is a modification from open cholecystectomy in which the cystic duct and artery are putatively identified after completely removed from the cystic plate and attached only by the 2 cystic structures.
- Only then is secure target identification achieved.
- In laparoscopic surgery, complete separation of the gallbladder from the cystic plate makes clipping of the cystic structures difficult, so this step was modified to require only that the lower part of the gallbladder (about one-third) be separated from the cystic plate.
The Critical View
2-Time out

• Intraoperative timeout to confirm CVS prior to clipping
• Use the doublet view
The Critical View (after clips placed)
3-Aberrant Anatomy

- Short cystic duct
- Aberrant hepatic duct
- Artery:
 - 75% single artery: superficial and deep branch
 - From R hepatic artery
 - 25% multiple cystic artery
 - 30% alternative source
 - 10-15% source outside hepatocystic triangle
4-Image biliary tree

- Liberal use of cholangiogram
- Define anatomy
- Difficult cases

- Consider ICG imaging
Cholangiogram

- Performed selectively (anatomy vs CBD stone)
- 3-5% chance stone in CBD
- Technique:
 - Visualize left and right hepatic ducts
 - Visualize contrast entering duodenum
- Pitfalls:
 - Occlude catheter (metal clips)
 - No bubbles (withdraw don’t push)
 - May need to place pt in Trendelenburg
Intra-operative cholangiogram
5- Stop surgery when dissection is too difficult

- Recognize zone of significant risk
- Stop before entering this area
- If CVS is not able to expose than stop surgery (subtotal vs tube vs open)
- If unable to identify hepatocystic triangle
- Dissection is not progressing
- Excessive bleeding
- Extensive fibrosis
Safe Bailout
Damage Control Techniques

• Drainage:
 – Leave a cholecystostomy tube: return in 3 months

• Fundus-first approach
 – Dissection starts from fundus to infundibulum
 – Goal is better identification of Calot triangle structures
 – Be careful of dissecting too far

• Subtotal cholecystectomies
 – Fenestrating
 – Reconstituting
Cholecystostomy tube

- Cholecystostomy decompresses severely inflamed or GB empyemas
- Bridge toward definitive treatment

- Technique
 - Placement of a “purse-string” suture
 - Gallbladder fundus entered
 - Contents suctioned
 - Drainage catheter brought through the abdomen wall ("mushroom tip" catheter or Foley balloon catheter) is placed into the gallbladder lumen.
 - Definitive cholecystectomy in 2–3 months
Subtotal

- 1st reported by Madding in 1955
- Replacement for cholecystostomy
- Rescue procedure in cases of technically difficult total cholecystectomy

Technique
- Incising the GB at the fundus
- Carried down to 1 cm from the CD
- Excising the redundant GB wall
- Piecemeal excision of the GB
- Mucosa of remnant was coagulated or left intact
- CD was closed from within the GB with a purse-string suture
Subtotal Cholecystectomy (not partial)

• Removes portions of the GB when the structures of the Calot triangle cannot be identified and the critical view of safety cannot be achieved.

• Technique:
 – Longitudinal incision on gallbladder away from infundibulum
 – Remove all stones
 – Suture close cystic duct if bile leaking
 – +/- Imaging
 – Fulgurate posterior wall of gb
 – Leave closed suction drain
Complications from Subtotal Cholecystectomy

• Morbidity rates were relatively low
 – postoperative hemorrhage 0.3%
 – subhepatic collections 2.9%
 – bile duct injury 0.08%
 – retained stones 3.1%

• Rate for bile leaks was higher (18.0%)

• CBD injury was absent in the subgroup in which the CD or GB stump was left open because of avoidance of the hazardous dissection of the CD in cases with difficult Calot triangles
Types of Subtotal Cholecystectomy

Fenestrating

- Does not occlude the gallbladder
- May suture the cystic duct internally
- Higher incidence of postoperative biliary fistula
- Not associated with recurrent cholecystolithiasis

Reconstituting

- Closes off the lower end of the gallbladder
- Reducing the incidence of postoperative fistula
- Creates a remnant gallbladder
- May result in recurrence of symptomatic cholecystolithiasis
Subtotal Fenestrating Cholecystectomy

- Mucosa
- Cystic duct orifice
- Cut edge of gallbladder
- "Shield" of McElmoyle
- Hepatocystic triangle (obscured)
- Liver
- Bare liver
Subtotal Reconstituting Cholecystectomy

A

B

Liver
Bare liver
Cut edge of gallbladder
Mucosa
Hepatocystic triangle (obscured)
Gallbladder remnant
Suture line

Duke Medicine
Remnant Gallbladder

- Gallbladder remnants may become symptomatic and require excision in a second operation at any time from shortly after the initial operation to many years later.
- The latter is an important point because most publications dealing with the outcomes of less than complete cholecystectomy have short follow-up times and therefore, may underestimate the consequences of leaving gallbladder remnants.
- Furthermore, operations to remove remnant gallbladders may be difficult, so procedures that do not result in remnant gallbladders are more desirable than those that do.
6-Ask for help from another surgeon

- Helpful for a second opinion when
- Dissection is stalled
- Anatomy is unclear
- Surgery has become difficult for primary surgeon
Laparotomy

- **Indications:**
 - Bleeding
 - Lack of progress
 - Need for tactile feedback

- **Call for help**

- **Technique**
 - Start as subtotal
 - Large incision
 - Packs to elevate liver
 - Self retaining retractors
 - Head light

- **Cystic plate retracts and injury to portal vein**
Advanced instruments

- Add extra ports
- 10mm suction catheter
- Advanced energy device: ultrasonic shears?
- Get the best optics: increase to 10mm scope
- Place liver bar
- Bring in laparoscopic needle drivers
- Argon
- More endocatch bags
DIFFICULT GALLBLADDER
Non-surgical options

- Stone-dissolving medication (ursodiol / Actigall)
 - expensive (need to take it for life)
 - may not work on larger stones
 - side effects include diarrhea and abdominal pain

- Break up the stones (lithotripsy)
 - not offered in most places
 - stones will re-form
Benefits of surgery

• To get rid of symptoms.
• To minimize risk of other complications of gallstones – cholecystitis, cholangitis, and pancreatitis.
Risks of surgery

- Conversion to an open procedure – 1% for elective (as high as 29% in urgent situations)
- Bile duct injury (0.2%)
- Bile leak (2%)
- Retained stone in the common bile duct
- Diarrhea

- Persistent symptoms after surgery
- Infection (intra-abdominal, wound, lungs, bladder)
- Blood clot in major vein in legs and/or lungs
- Bleeding
- Heart attack
- Stroke
Difficult Gallbladder

When severe inflammation makes dissection challenging:

- acute cholecystitis
- empyema
- gangrene
- perforation
- Mirizzi syndrome
- Fibrotic rind
- Difficulty elevating
- Large impacted stone in infundibulum
Risk Factors for the Difficult Gallbladder

- **Cholecystitis**
 - Chronic
 - Thick-walled or contracted/shrunken gallbladder
 - >10 (multiple) episodes of biliary colic
 - Prior acute cholecystitis
 - Percutaneous cholecystostomy tube

- **Acute**
 - >72–96 hours since onset of symptoms
 - White blood cell count >18,000/μL
 - Palpable gallbladder
 - Gangrenous or perforated gallbladder

- **Elderly (>65 years)**
- **Male gender**
- **Morbid obesity**
- **Mirizzi’s syndrome or cholecystoenteric fistula**
- **Cirrhosis (especially with portal hypertension)**
- **Prior procedures**
 - Open upper abdominal surgery
 - Previous attempt at cholecystectomy or partial cholecystectomy
Chronic cholecystitis
Intrahepatic GB (left-sided)